
Although the visual world is complex, it is typically not 
random. In addition to the laws of physics and the social 
or cultural norms that constrain the arrangement of ob-
jects in a scene, other contextual regularities may provide 
order to our environment. The location of objects is often 
systematically, functionally, and meaningfully related to 
the position of other objects (e.g., televisions in front of 
sofas), certain classes of objects tend to co-occur (e.g., 
refrigerators, sinks, and food), and the actions afforded by 
specific objects are often engaged in particular temporal 
sequences (e.g., the movement of cars at an intersection). 
By encoding and maintaining such regularities in long-
term memory, observers can reduce the cognitive com-
plexity of visual environments, which in turn can result 
in more efficient action and behavior (see Chun & Turk-
Browne, 2008, for a thorough review). This extraction of 
spatial and temporal regularities from the visual world in 
the service of enhancing performance on visually guided 
tasks is often called visual statistical learning (VSL).

A variety of experimental paradigms have been used 
to study the mechanisms behind and applications of 
VSL, but their common denominator as been an effort to 
characterize the representations that encode covariation 

among visual objects or events. Most efforts to elucidate 
the structure and content of the representations involved 
in VSL have investigated the types of regularities in an en-
vironment that can be learned (see, e.g., Baldwin, Anders-
son, Saffran, & Meyer, 2008; Chun & Jiang, 1998; Fiser & 
Aslin, 2001, 2002, 2005; Geng & Behrmann, 2002, 2005; 
Kirkham, Slemmer, & Johnson, 2002; Olson & Chun, 
2001; Turk-Browne, Isola, Scholl, & Treat, 2008; Turk-
Browne, Jungé, & Scholl, 2005; Turk-Browne, Scholl, 
Chun, & Johnson, 2009). A complementary approach has 
been to ask how readily one can transfer learned associa-
tions to novel contexts or situations (see, e.g., Brady & 
Oliva, 2008; Brockmole, Castelhano, & Henderson, 2006; 
Crist, Kapadia, Westheimer, & Gilbert, 1997; Ehinger & 
Brockmole, 2008; Jiang & Song, 2005; Turk-Browne & 
Scholl, 2009). Whereas the first approach defines human 
sensitivity to regularities in the environment, the second 
defines the flexibility with which statistical representa-
tions can be applied to situations that only partially repli-
cate the original environmental circumstances present at 
the time of learning. By jointly considering what can be 
learned and how flexibly the resulting representation can 
be used to guide behavior, the contents and specificity 
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visually guided tasks. In this study, we aimed to directly 
address these issues.

Our first goal was to demonstrate that contextual cuing 
can result when target–scene regularities exist across 
scenes with common identity but no perceptual overlap. 
To do this, we asked participants to search through pho-
tographs of bedrooms for an artificially embedded “T” 
or “L” (Brockmole & Henderson, 2006b). Letter targets 
were used because their locations could not be predicted 
a priori from scene content (e.g., their placement is not 
constrained by physical laws such as gravity), and thus we 
could evaluate the development of interobject associations 
independent of participants’ preexisting knowledge of 
typical scene structures. For all participants, targets were 
placed in the same (x, y) coordinates on the display. By 
varying target–scene pairings (see Figure 1), we created a 
situation for one group of participants for whom the search 
target was always located on a bed pillow ( predictable con-
dition) and a situation for another group for whom the tar-
get was placed pseudorandomly with regard to local scene 
content (random condition). If observers are sensitive to 
covariation existant across scenes, search should become 
progressively more efficient in the predictable condition 
than in the random condition. Furthermore, because each 
scene is shown only once, any such increase in search ef-
ficiency will depend on the observers’ ability to abstract 
associations common to all scenes rather than their ability 
to memorize target locations within specific scenes.

To quantify the efficiency of search, participants’ eye 
movements were monitored, and gaze behaviors were 
used to measure search efficiency. We used gaze instead 
of response time (RT) as a measure of attentional guid-
ance because there are current debates regarding the in-
terpretation of RTs in contextual cuing tasks (see Kunar, 
Flusberg, Horowitz, & Wolfe, 2007). We examined three 
gaze measures: the elapsed time prior to fixating (i.e., 
finding) the target, the number of fixations made prior to 
fixating the target, and the scan-path ratio (see Brockmole 
& Henderson, 2006a). This last measure contrasts the total 
amplitude of all saccades prior to fixating the target with 
the linear distance between the participants’ initial fixa-
tion point and the search target (Henderson, Weeks, & 
Hollingworth, 1999). A perfectly efficient search would 
yield a ratio of 1; as the eye-movement path becomes less 
direct, the scan-path ratio increases. In addition to these 
global measures of search efficiency that collapse across 
multiple eye movements, we also analyzed search effi-
ciency in terms of individual fixations by computing the 
distance between sequential points of fixation and the tar-
get. Although not orthogonal, these measures characterize 
search behavior in different ways, and consistency across 
these dependent variables would provide converging indi-
cators of contextual cuing and its behavioral effects.

In addition to using an analysis of search efficiency to 
measure learning, we later tested the extent to which par-
ticipants could explicitly recognize old scenes and recall 
the target locations within them (see Brockmole & Hen-
derson, 2006b; Chun & Jiang, 1998; Smyth & Shanks, 
2008). The purpose of this additional analysis was twofold. 
First, it provided a measure of metacognitive awareness 

of long-term visual memory gained through VSL can be 
determined.

Our focus in the present study was on both the ac-
quisition and transfer of learning within a type of VSL 
called contextual cuing, in which repeated exposure to a 
specific arrangement of target and distractor items leads 
to a progressively more efficient search (Chun & Jiang, 
1998). This improved efficiency has been evidenced by 
decreased search times (Brockmole & Henderson, 2006b; 
Chun & Jiang, 1998) and by fewer (Brockmole & Hen-
derson, 2006a; Peterson & Kramer, 2001) and more direct 
eye movements (Brockmole & Henderson, 2006a) to the 
target. Although contextual cuing clearly demonstrates 
that memory for specific spatial configurations can be 
used to improve the efficiency of visually guided search, 
the nature of the information that people use to do this 
remains an open and important avenue of research. The 
aim of the present research was to investigate the degree 
to which learning can be abstracted away from specific 
learning contexts.

On the one hand, a body of evidence indicates that 
contextual cuing involves the learning of associations be-
tween consistently mapped visual features within specific 
scene exemplars. For example, the visual similarity of and 
spatial distance between targets and context-defining dis-
tractors (Jiang & Chun, 2001; Olson & Chun, 2002) and 
the proportion of a visual display that is repeated across 
viewing encounters (Brockmole et al., 2006) all affect 
contextual cuing. In essence, the greater the dissimilarity 
between repeating displays, the less contextual cuing is 
observed. These findings therefore suggest that contextual 
cuing is strongly item specific.

On the other hand, spatial associations among objects 
do not stem solely from learned associations between the 
consistently mapped visual features composing a display. 
In real-world scenes, visual features such as color can be 
altered without disrupting associative learning, provided 
that the changes do not alter the identity of the scene 
(Ehinger & Brockmole, 2008). Likewise, when visual 
features are held constant, one’s ability to identify the ob-
jects, scenes, and their interrelations affects the speed and 
magnitude of contextual learning (Brockmole, Hambrick, 
Windisch, & Henderson, 2008; Brockmole & Henderson, 
2006b). These studies indicate that learning can be at least 
partially abstracted away from specific featural aspects of 
a scene, provided that semantic knowledge including (but 
probably not limited to) categorical-identity information 
can be used to access memory for the spatial associations 
among objects in a scene.

From the evidence cited above, it appears that both 
item-specific features and abstracted category informa-
tion can influence recall and recollection of learned sta-
tistical regularities. To date, however, the contribution of 
abstracted learning has not been partialed out from that 
of item-based memory, because the organizing principle 
of contextual cuing paradigms has been the repetition 
of context–target pairings that are specific to individual 
scenes. This leaves unanswered the questions of how sta-
tistical regularities common to multiple scenes are learned 
and how they are subsequently employed in the service of 
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Figure 1. Example scenes. The same 32 images were used in the predictable and random search conditions. In the predictable 
condition (left column), the target was always located on a bed pillow. In the random condition (right column), targets and scenes 
were shuffled so that the target was located randomly in each scene but in the same (x, y) coordinates across scenes (compare 
scenes within each row). Bull’s-eyes have been added in this illustration to indicate target location (but not size), and they were 
not present in the experimental stimuli. Example transfer stimuli are depicted at the bottom of the figure.
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if global category identity is used to invoke these seman-
tic associations (cf. Davenport & Potter, 2004), then one 
could predict that learning will transfer to living rooms 
but not to kitchens. This state of affairs may be adaptive, 
since category-based memory could be used to generate 
broad, but contextually appropriate, retrieval and search 
strategies. Note that if search is based purely on the per-
ceptual characteristics of critical local objects (in this 
case, pillows), then the change to either scene category 
should cause little disruption in search.

Method

Participants
Sixty undergraduate students participated after providing in-

formed consent.

Stimuli and Apparatus
A variety of stimuli were used in the experiment. First, we created 

32 full-color photographs of bedrooms in which a single gray “T” 
or “L” (subtending 0.18 deg horizontally and vertically) was embed-
ded. The luminance of each target was adjusted in each image so 
that its contrast with the local background was approximately equal 
in all scenes. This letter constituted the target in a visual search task. 
Two sets of stimuli were created. In the first, targets were placed on 
a bed pillow. The precise position of each target on each pillow was 
randomly chosen under the constraint that targets be clearly vis-
ible (i.e., they were not masked or camouflaged by edges, contours, 
textures, etc.). In the second, photographs and target positions were 
“shuffled,” which had the effect of pseudorandomizing the place-
ment of targets within scenes while keeping the (x, y) coordinates 
of all targets across the stimulus set unchanged. Care was taken to 
ensure that the overall visibility of targets in the shuffled image 
set was equal to that of targets in the predictable image set, and 
results reported below will confirm that at the beginning of the ex-
periment, before substantial learning was possible, search through 
the shuffled image set was no more and no less difficult than it 
was through the predictable image set. In addition to the stimuli in 
these two image sets, 4 stimuli depicting bedrooms without pillows, 
3 stimuli depicting living rooms, and 4 stimuli depicting kitchens 
were also created (see Figure 1).1 Within the additional bedroom 
scenes, targets were located on the mattress near the head of the 
bed. In the living room scenes, targets were located on a sofa pil-
low. In the kitchen scenes, targets were located on a bed pillow. 
Finally, an additional 12 stimuli depicting bedrooms (with pillows) 
were created in which no targets were present. The manner in which 
all these experimental stimuli were used during the experiment is 
described below.

Stimuli were displayed at a resolution of 800 3 600 pixels in 24-
bit color on a 17-in. CRT display with a refresh rate of 120 Hz. Chin-
rests and forehead rests maintained a viewing distance of 81 cm. 
Under these conditions, the stimuli subtended 24 deg horizontally 
and 18 deg vertically. Throughout each trial, the position of each 
participant’s right eye was sampled at a rate of 1000 Hz by an Eye-
Link 2K eyetracking system (SR Research, Inc.) running in pupil 
and corneal-reflection mode, which resulted in an average spatial 
accuracy of 0.15º. A Microsoft video game controller was used to 
collect target-classification responses.

Design and Procedure
The experiment was divided into two main sessions. In the first 

session, participants engaged in a search task in which they located 
a target within a photograph of a real-world scene as quickly as pos-
sible. In the second session, participants were tested on the extent 
to which they could consciously recognize old scenes and recall the 
target locations within them. We describe the design and procedures 
related to each session in turn.

pertaining to abstract associations. Since Chun and Jiang’s 
(1998) seminal demonstration of implicit (i.e., independent 
of awareness) contextual cuing, this has been a commonly 
addressed question, with a variety of situational factors 
leading to the observation of implicit and explicit effects. 
Second, and more importantly, it provided a measure of 
the spatial precision with which targets were encoded into 
memory. A particular interest in this regard concerned 
target placement within falsely recognized scenes. In this 
case, no item-specific memory is available to guide target 
placement; however, generalized knowledge about target 
placement common to the studied scenes might be expected 
to bias spatial judgments regarding target placement.

Our second goal was to investigate the nature of the 
representations underlying abstracted learning by consid-
ering the degree to which the derived relational rules used 
to guide search can be applied to different scenes with 
varying levels of similarity to the initial learning context 
(see Figure 1). Following their initial search through the 
bedroom scenes, participants in both the predictable and 
random conditions were exposed to one of three differ-
ent transfer scenarios. We exposed one group of partici-
pants to bedrooms that did not contain any pillows. In this 
case, the local landmarks predicting search targets were 
removed. However, we placed targets in locations where 
a pillow would normally appear. If observers abstract a 
perceptual rule on the basis of low-level visual features 
coincident with the presence of a pillow (e.g., small, rect-
angular, convex), then one might expect limited transfer 
of learning, since such features would now be absent from 
the area surrounding the target. If, however, guidance is 
more semantic in nature—that is, based on expectations 
that arise from scene category, identity, or gist informa-
tion—then attention may be systematically directed to lo-
cations likely to contain a pillow. In this case, transfer of 
learning should be rather complete.

In order to determine the flexibility with which any 
such semantic representations can be applied, we also as-
sessed whether the relational rules abstracted from dif-
ferent scenes are specifically linked to the global con-
texts in which they are learned. To this end, we showed 
observers either living rooms (second group) or kitchens 
(third group) in which the target was again located on a 
pillow. Although multiple scene categories might predict 
the presence and location of a pillow, it is possible that 
the application of abstracted associations will be limited 
to the scene category in which they were learned (in this 
case, bedrooms). If so, then any benefits of repetition 
should be lost on both sets of transfer trials. Such a re-
sult may be predicted by prior work demonstrating that 
scene-category information is a primary guide of atten-
tion allocation when item memory is available to guide 
search (Brockmole et al., 2006; Brockmole & Henderson, 
2006a). Another possibility is that transfer of abstracted 
regularities can occur within any scene that predicts the 
presence and location of relevant landmarks. For exam-
ple, living rooms clearly allow for the presence of pillows 
whose locations are in turn highly predictable (e.g., sofas), 
but pillows are anomalous in kitchens. If search is driven 
by a semantically derived rule, as hypothesized above, and 
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curate. These trims resulted in the loss of 25% of trials.2 
The 32 bedroom trials were collapsed into four blocks 
of 8 trials each, and analyses contrasted search behavior 
for participants in the predictable and random conditions 
across this block factor.

Trends in the elapsed time prior to fixating the target, 
the number of fixations prior to fixating the target, and the 
scan-path ratio are illustrated in Figure 2. We initially sub-

Search session. The search session crossed two search conditions 
(predictable and random) and three transfer conditions (bedroom, 
living room, and kitchen). Participants were randomly and equally 
assigned to one of the six resulting experimental conditions. All par-
ticipants first viewed 32 bedroom scenes in a different random order. 
For participants in the conditions involving predictable search, tar-
gets were always located on the bed pillow. Participants in these 
conditions were not informed of this consistency, however. For par-
ticipants in the conditions involving random search, targets did not 
covary with particular objects within the scenes even though they 
appeared in the same (x, y) positions in the display. Following these 
trials, one third of participants were shown bedroom scenes without 
pillows (targets on a bed), one third were shown living room scenes 
(targets on a sofa pillow), and one third were shown kitchen scenes 
(targets on a bed pillow). These transfer trials were unannounced 
and were not preceded by any break or pause.

Participants began the search session by completing a calibration 
routine that mapped the output of the eyetracker onto display posi-
tion. Calibration was monitored throughout the experiment and was 
adjusted when necessary. At the beginning of each trial, a fixation 
cross was presented in the center of the display. Participants were 
instructed to look at this cross, whereupon the search scene was pre-
sented. Upon identifying the target, participants pressed one of two 
buttons corresponding to either “T” or “L.” The trial was terminated 
if a response was not made within 15 sec of scene onset. Participants 
were told to respond as quickly, but as accurately, as possible.

Scene-recognition and target-recall session. Immediately fol-
lowing the completion of the search session, all participants com-
pleted the same recall session, in which they viewed 24 full-color 
photographs of bedrooms. Twelve of these photographs were ran-
domly selected from the 32 bedroom images used in Experiment 1 
(targets were removed, however). The remaining 12 photographs 
were of bedrooms not previously shown to observers. Participants 
viewed all 24 scenes in a different random order and classified each 
as either old (included in Experiment 1) or new (not included in Ex-
periment 1). For those scenes that were judged to be old, participants 
then indicated where the target had been located by moving a cursor 
with a mouse trackball to the location at which they previously found 
the target. Participants were told that they were under no time con-
straints to make their responses. Eye movements were not recorded 
during this session of the experiment.

Results

Whereas the method section is organized simply ac-
cording to the order in which tests were administered, we 
organize our report of the experimental results into three 
thematic sections. First, we describe the effects of learn-
ing during visual search by focusing on the first 32 trials 
of the search session, in which all participants viewed the 
same bedrooms scenes. Second, we describe the effects 
of learning on one’s ability to explicitly recall the position 
of targets within the previously viewed scenes. Finally, we 
consider the extent to which learning transfers to novel 
search contexts.

Analysis 1: Effects of Learning During Search
Initial analyses focused on the elapsed time, number of 

fixations, and scan-path ratio prior to fixating the target. 
For all of these analyses, the target was considered to be 
fixated when a point of fixation was within 0.85 deg of the 
center of the target. Trials on which this conservative cri-
terion was not met were excluded from the analyses. Trials 
were also excluded if search was not completed within the 
allotted time, track-loss occurred, or calibration was inac-
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50% by the end of the learning trials when target location 
was predicted by scene context.

In addition to the above global-level measures of gaze 
behavior that collapsed across the entire viewing period 
between scene onset and fixation on the target, we also 
quantified search behavior at the level of individual eye 
movements at the very early stages of search (cf. Brock-
mole & Henderson, 2006a; Peterson & Kramer, 2001). 
The goal of this analysis was to determine the speed with 
which learning begins to guide attention. If learning can 
exert an early influence on search, then evidence for a sys-
tematic shift of gaze toward the targets should be evident 
in the first few fixations on a scene. The point during the 
experiment at which such a tendency was evident further 
provides an estimate for the speed with which contingen-
cies were learned. For each of the first five fixations on a 
scene, we calculated the linear distance between the locus 
of gaze and the position of the target. Because this analy-
sis concerns search behavior prior to finding the target, all 
trials were included.

Results are illustrated in Figure 3, broken down by 
search condition and block. A 2  (search condition) 3 
4 (block) 3 5 (fixation number) mixed model ANOVA re-
vealed reliable main effects of search condition [F(1,57) 5 
38.6, p , .001], block [F(3,171) 5 11.1, p , .001], and 
fixation number [F(4,228) 5 7.54, p , .001]. Critically, 
the three-way interaction of these factors was also reliable 
[F(12,684) 5 2.74, p , .001]. To clarify the nature of this 
interaction, we conducted separate 4 (block) 3 5 (fixation 
number) repeated measures ANOVAs within each search 
condition. Within the random condition, the only reliable 
effect to emerge was a that of fixation number [F(4,116) 5 
3.44, p , .05; all other ps . .40]. However, this effect was 
driven by a small linear increase in the measured distance 
between the locus of each successive fixation and the tar-
get [F(1,29) 5 4.56, p , .05]. Clearly, gaze showed no 
propensity to progressively shift toward the target either 

mitted these trends to separate 2 (search condition: ran-
dom and predictable) 3 3 (transfer condition: bedrooms 
without pillows, living rooms with pillows, and kitchens 
with pillows) 3 4 (block: 1–4) mixed model ANOVAs. 
Because the learning trials were same for all participants, 
in no analysis were the main effects or interactions involv-
ing transfer condition reliable (all ps . .22). Subsequent 
analyses therefore collapsed across transfer condition, and 
a 2 (search condition) 3 4 (block) mixed model ANOVA 
was conducted for each dependent measure. The results of 
these analyses were entirely consistent, and we therefore 
report them in parallel.

We first note that in Block 1, all three measures were 
equivalent across the predictable and random search con-
ditions (all ps . .17), indicating that search difficulty was 
initially equal in both conditions. Despite this initial equiva-
lence, main effects were observed for search condition [time, 
F(1,58) 5 40.8, p , .001; fixations, F(1,58) 5 35.9, p , 
.001; scan-path ratio, F(1,58) 5 29.0, p , .001], and block 
[time, F(3,174) 5 7.88, p , .001; fixations, F(3,174) 5 
7.71, p , .001; scan-path ratio, F(3,174) 5 2.78, p , .05]. 
Critically, these factors interacted [time, F(3,174) 5 7.30, 
p , .001; fixations, F(3,174) 5 6.41, p , .001; scan-path 
ratio, F(3,174) 5 12.1, p , .001]. In the random condi-
tion, little change in search efficiency was observed across 
blocks. In Block 1, search required 2,971 msec and 10.5 
fixations, and the eyes traversed a path 7.0 times greater 
than the shortest possible path to the target. Similarly, in 
Block 4, 2,750 msec, 9.7 fixations, and a scan-path ratio of 
7.7 were required. In contrast, in the predictable condition, 
substantial decreases in all three measures of search effi-
ciency were observed. When targets were consistently lo-
cated on a bed pillow, an average 2,451 msec, 9.0 fixations, 
and a scan-path ratio of 6.9 were needed to find the target 
in Block 1, whereas only 1,097 msec, 4.5 fixations, and 
a scan-path ratio of 2.9 were required in Block 4. By any 
measure, then, search efficiency improved approximately 
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distance was, on average, 8.17 deg for the random group 
[t(49) 5 7.29, p , .001; 5 participants had no false alarms 
and were excluded from this analysis]. Clearly, memory 
for target–scene contingencies improved explicit recall of 
target position. It is interesting to note, however, that in 
the predictable condition, participants’ memory for target 
position was biased toward the pillows’ center of mass. 
Using the pillows’ center of mass as a reference point 
instead of actual target positions in old scenes, the aver-
age error in target localization was 2.49 deg. This value 
is 37% less than that obtained when measuring the dis-
tance between target placements and the actual location 
of the targets [t(27) 5 8.54, p , .001] and is equivalent 
to the distance between target placements and the pillows’ 
center of mass observed on false-alarm trials [t(27) , 1]. 
This result suggests that participants in the predictable 
group did not remember exact locations of the targets, but 
instead extrapolated a general covariation rule such as 
“the target is on the pillow” to guide their positioning of 
targets. We discuss this finding in more depth in the dis-
cussion, below.

Summary of findings. The results of Analysis 2 indi-
cate that in addition to search efficiency, learned regulari-
ties are revealed by measures of explicit recall.4 Despite 
equivalent scene recognition, participants in the predict-
able condition were able to indicate target positions in 
previously viewed scenes more accurately than were par-
ticipants in the random condition. Target placement was 
systematically biased, however, toward the pillows’ center 
of mass, indicating imprecise spatial memory for target 
position.

Analysis 3: Transfer of Learning  
to Novel Search Environments

Unlike the learning trials described above, the transfer 
trials were not the same for all participants. We therefore 
considered search performance separately within each 
of the three transfer conditions. Before reporting these 
analyses, we note that we did not analyze global gaze 
behavior prior to fixation on the target, because some 
participants (primarily those in the random condition) 
did not fixate the target on one or more of the trans-
fer trials. We therefore focused on the distance analysis 
reported above, which does not require that the target 
be ultimately fixated. To avoid empty cells in the data 
matrix, we restricted our analysis to the first three fixa-
tions, because participants in the predictable condition 
often fixated the target by the third fixation (in contrast, 
none of the participants in the random condition fixated 
the target by even the fifth fixation). These results are 
illustrated in Figure 4.

Transfer Test 1: Bedrooms without pillows. We 
initially submitted the data to a 4  (trial) 3 3 (fixation 
number) 3 2 (search condition) mixed model ANOVA to 
determine whether search behavior varied across the four 
transfer trials. No main effects or interactions involving 
the trial factor were reliable (all ps . .71), indicating that 
search behavior on all four transfer trials was equivalent. 
Therefore, we conducted an ANOVA that collapsed across 
transfer trials. In this analysis, main effects of search con-

across fixations or across blocks. Within the predictable 
condition, however, the main effects of block [F(3,84) 5 
16.7, p , .001] and fixation number [F(4,112) 5 19.4, 
p , .001] were reliable, as was the interaction of these 
factors [F(12,336) 5 6.53, p , .001]. Although the eyes 
showed no propensity to move toward the target in Block 1, 
paired t tests contrasting fixation–target distances across 
blocks and fixations showed that beginning in Block 2, 
the very first eye movement on the scene systematically 
moved toward the target ( p , .01) and that this benefit 
was magnified in Blocks 3 and 4. These results indicate 
that the contingencies between targets and scenes were 
established quickly (i.e., between 9 and 16 repetitions), 
and, once learned, they exerted an immediate influence 
on attentional control during scene viewing by driving the 
very first saccade toward the target.

Summary of findings. Trends in all of the dependent 
variables reported above demonstrate that search gradu-
ally became more efficient in the predictable condition 
but not in the random condition. The time and number of 
fixations needed to find the target as well as the total am-
plitude of the eye movements decreased over trials in the 
predictable condition, in which targets were always placed 
on a bed pillow. This increase in the efficiency of search 
was also observed at the level of individual fixations very 
early during search, since the eyes moved more directly 
toward the target as the experiment unfolded.

Analysis 2: Effects of Learning  
on Target Recall After Search

Initial analyses pertaining to scene recognition and tar-
get placement confirmed that none of the dependent mea-
sures reported below varied across transfer conditions (all 
ps . .33). Analyses reported below therefore collapsed 
across this factor.

Scene recognition. Explicit scene recognition was 
measured by computing A′, which contrasts hit and false-
alarm rates and ranges from .5 (chance performance) to 
1 (perfect discrimination). A′ scores observed for partici-
pants assigned to the predictable and random conditions 
of Experiment 1 were .70 and .73, respectively, indicating 
equivalent [t(54) , 1] and above-chance recognition of 
old displays in both groups.

Target placement. Although participants in the pre-
dictable and random conditions discriminated between 
old and new scenes with equal accuracy, memory for tar-
get position clearly differed between these groups. First, 
the average error in target localization (i.e., the distance 
between the actual and participant-indicated target loca-
tions) in the predictable group was 3.97 deg, whereas for 
the random group this error was, on average, 8.16 deg 
[t(53) 5 6.39, p , .001; 1 participant had a hit rate of 0 
and was excluded from this analysis]. By comparison, the 
expected error in target placement on the basis of ran-
domly selected responses was approximately 10.3 deg.3 
Second, on false-alarm trials (i.e., new scenes classified 
as old), participants in the predictable group placed tar-
gets within 2.78 deg of the bed pillows’ center of mass 
(defined as the middle of the smallest imaginary rectangle 
that could be drawn around the bed pillows), whereas this 
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predictable condition [F(2,18) 5 35.97, p , .001], indi-
cating some degree of transfer.

To assess whether transfer was complete, we contrasted 
performance on the transfer block with the last block of 
learning trials. A 2  (block) 3 3 (fixation number) re-
peated measures ANOVA revealed a main effect of block 
because the distance between the initial fixation point and 
the target was not constrained to be equal across blocks 
[F(1,9) 5 13.7, p , .01]. The expected effect of fixation 
number was also observed [F(2,18) 5 45.6, p , .001]. 
Critically, these factors did not interact [F(2,18) 5 1.67, 
p 5 .22], indicating equivalent guidance of gaze toward 
the target in the last block of learning trials and in the 
block of transfer trials. This finding suggests complete 
transfer of learning.

Transfer Test 2: Living rooms with pillows. Once 
again, a 3 (trial) 3 3 (fixation number) 3 2 (search condi-
tion) mixed model ANOVA was conducted to determine 
whether search behavior varied across the transfer trials. A 
main effect of trial was observed because the distance be-
tween the initial fixation point and the target was not con-
strained to be equal across the transfer trials [F(2,36) 5 
3.69, p , .05]. No interactions involving the trial factor 
were reliable, however, indicating that search behav-
ior on all three transfer trials was equivalent. Therefore, 
we conducted an ANOVA that collapsed across transfer 
trials. In this analysis, main effects of search condition 
[F(1,18) 5 11.1, p , .001] and fixation [F(2,36) 5 10.9, 
p , .001] were observed. Critically, these factors inter-
acted. [F(2,36) 5 6.33, p , .01]. To explore the nature of 
this interaction, we considered the random and predictable 
search conditions separately. In the random condition, no 
effect of fixation number was observed [F(2,18) , 1], 
since the eyes showed no systematic tendency to move 
closer to the target. In contrast, a clear shift of gaze to-
ward the target was observed in the predictable condition 
[F(2,18) 5 14.3, p , .001], again indicating some degree 
of transfer of learning. Contrasting performance on the 
transfer block with that on the last block of learning trials 
in the predictable condition, a 2 (block) 3 3 (fixation num-
ber) repeated measures ANOVA showed a marginal effect 
of block because the distance between the initial fixation 
point and the target was not constrained to be equal across 
trials or blocks [F(1,9) 5 3.22, p 5 .11]. The expected 
effect of fixation number was also observed [F(2,18) 5 
43.15, p , .001]. Once again, these factors did not inter-
act [F(2,18) , 1], indicating equivalent guidance of gaze 
toward the target in the last block of bedroom trials and in 
the block of transfer trials. This finding suggests complete 
transfer of learning from bedrooms to living rooms.

Transfer Test 3: Kitchens with pillows. As in the 
previous analyses, a 4 (trial) 3 3 (fixation number) 3 
2 (search condition) mixed model ANOVA was conducted 
to determine whether search behavior varied across the 
transfer trials. No main effects or interactions involving 
the trial factor were reliable (all ps . .11), indicating that 
search behavior on all four transfer trials was equivalent. 
In an analysis that collapsed across transfer trials, a mar-
ginal effect of search condition was observed [F(1,18) 5 

dition [F(1,18) 5 33.8, p , .001] and fixation [F(2,36) 5 
4.35, p , .001] were observed. Critically, these factors 
interacted. [F(2,36) 5 26.6, p , .001]. To explore the 
nature of this interaction, we separately considered the 
random and predictable search conditions. In the random 
condition, an effect of fixation number was observed 
[F(2,18) 5 3.91, p , .05], but this was due to a modest 
tendency to shift gaze away from the target. In contrast, a 
clear shift of gaze toward the target was observed in the 
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Figure 4. The linear distance between the point of fixation and 
the target on the transfer trials as a function of transfer condition, 
search condition, and fixation number (the first three fixations on 
the scene). Error bars depict standard errors of the means.
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with common identity but no perceptual overlap (Analy-
sis 1 above). Participants searched for letter targets within 
32 different bedroom scenes. For half of the participants 
these targets were randomly positioned within the scenes. 
For the other half of the participants, the targets were lo-
cated on the bed pillow. Participants in this condition were 
sensitive to this contingency, and search became more ef-
ficient as the experiment progressed. This improvement 
in search demonstrates that observers are able to learn the 
regularities that exist across their visual environments, 
even when each environment is encountered only once.

When asked to identify the locations of targets after the 
search task was completed (Analysis 2 above), partici-
pants in the predictable search conditions placed targets 
on a bed pillow but with systematic imprecision. When 
measured against the center of the pillows, target place-
ment was more accurate than when measured against the 
actual position of the target, which could appear anywhere 
on the pillow. There are two important implications for 
these findings. First, we can conclude that learning was 
explicit. This contrasts with the more usual finding that 
VSL involving multiple different (nonscene) displays 
is implicit (Chun & Jiang, 1999; Goujon, Didierjean, & 
Marmèche, 2007, 2009) but is consistent with superior 
explicit scene memory (Shepard, 1967; Standing, 1973; 
Standing, Conezio, & Haber, 1970) and explicit cuing 
typically observed during search through real-world 
scenes (Brockmole & Henderson, 2006b). As a result, it 
appears that metacognitive awareness of statistical regu-
larities present in a display is more strongly linked with 
the stimulus materials used than with the nature of the 
learning itself. Second, explicit knowledge of statistical 
relationships in scenes leads to biased recall of target posi-
tions. This is reminiscent of prototype effects in categori-
cal and spatial learning, in which the central tendency of a 
category introduces biases in the recall of specific exem-
plars (see, e.g., Huttenlocher, Hedges, & Duncan, 1991; 
Medin, Altom, & Murphy, 1984; Posner & Keele, 1968). 
In the present case, the abstracted contingencies enabled 
reasonably accurate recall, but this was likely driven by 
higher order spatial knowledge for the link between pil-
lows and targets rather than discrete memory for precise 
target positions.

Our second aim in this study was to determine the na-
ture of abstracted learning by considering the degree to 
which the derived relational rules used to guide search can 
be applied to different search contexts (Analysis 3 above). 
We first ruled out a perceptual learning effect based on 
low-level image properties by showing that when pillows 
were suddenly removed from bedrooms, participants in 
the predictable conditions continued to shift their gaze 
without hesitation to locations where pillows were most 
likely to appear—namely, the bed. This provides strong 
evidence that search was guided by semantic contingen-
cies linking bedrooms and pillows rather than by a per-
ceptual rule that relied on the visible presence of a pillow 
in the scene.

The use of these semantic regularities was not bound 
strictly to the particular category of scene in which they 
were learned, however. When the search context changed 

3.58, p 5 .075]. The main effect of fixation was reliable 
[F(2,36) 5 4.63, p , .05]. In contrast to prior analyses, 
however, these factors did not interact [F(2,36) 5 1.87, 
p 5 .17]. In both the random and predictable conditions, 
gaze tended to shift away from the target, and the magni-
tude of these trends was the same across conditions. Addi-
tionally, for those participants in the predictable condition, 
gaze behavior on the transfer trials was indistinguishable 
from that on the first block of learning trials (all ps . 
.54). Thus, no evidence for any degree of transfer was 
obtained.

Summary of findings. Although targets were always 
located on a pillow during learning, the presence of pil-
lows in the scene was not critical to search. When targets 
were positioned in a location in which one would reason-
ably expect to find a pillow (e.g., the bed), the benefits 
of learning were completely preserved. The effects of 
learning were also completely maintained when the scene 
category shifted from bedrooms to living rooms in which 
targets were located on a sofa pillow. When the scene cat-
egory shifted to kitchens, however, the effects of learning 
were entirely lost, despite the fact that targets continued to 
be located on a pillow.

Discussion

There is little dispute that visual behaviors includ-
ing gaze control are strongly influenced by a variety of 
top-down factors (see, e.g., Buswell, 1935; Henderson, 
Brockmole, Castelhano, & Mack, 2007; Torralba, Oliva, 
Castelhano, & Henderson, 2006; Yarbus, 1967). Preex-
isting representations of scene structure (Castelhano & 
Henderson, 2007), likely constituent objects (De Graef, 
Christiaens, & d’Ydewalle, 1990; Friedman & Liebelt, 
1981; Henderson et al., 1999), and likely locations of ob-
jects (Eckstein, Drescher, & Shimozaki, 2006; Hender-
son et al., 1999; Neider & Zelinsky, 2006; Torralba et al., 
2006; Võ & Henderson, 2009) all constrain search and 
gaze behaviors. Little research, however, has explored the 
manner in which these semantic expectations are born. 
Our goal was to take a first step toward describing and 
evaluating the learning mechanisms that give rise to se-
mantically based viewing behaviors.

To do this, we exploited contextual cuing, a type of vi-
sual statistical learning in which repeated exposure to par-
ticular context–target associations leads to progressively 
more efficient visual search. Typically, these learning 
effects are studied in situations in which specific visual 
displays are repeatedly shown to observers; however, the 
visual world is defined by contingencies that exist across, 
as well as within, scenes. In this article, we considered 
observers’ sensitivity to such covariation and the nature 
of the statistical representations that are abstracted away 
from individual scenes. Because we did not provide prior 
instruction to our participants regarding the contingen-
cies present in the scenes, we were able to investigate how 
these contingencies arose incidentally during scene view-
ing rather than through explicit instruction.

We first aimed to demonstrate that contextual cuing can 
result when target–scene regularities exist across scenes 
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from bedrooms to living rooms, participants who had 
found targets on bed pillows immediately shifted their at-
tention toward the pillows on the sofa. This finding sug-
gests that observers extrapolated a general rule that targets 
appear on a pillow, rather than a specific rule that they 
appear only on pillows in bedrooms, or even a moderately 
less constrained rule that they appear on pillows on beds. 
We can further exclude the possibility that the transfer 
we observed to the pillowless bedrooms was driven by a 
search for beds, because this strategy would have resulted 
in incomplete transfer to living rooms in which beds were 
absent. Basing knowledge of semantic regularities on local 
contingencies in this way provides flexibility to these rep-
resentations, because they can be applied across multiple 
scenes with very different global properties.

The ability to employ local contingency rules was not 
completely independent of scene category information, 
however. When the search context changed from a bedroom 
to a kitchen, participants showed no propensity to shift 
their gaze toward the pillows that were present in the scene. 
In combination with the search behaviors we observed in 
the living rooms, this result suggests that guidance arises 
from an interaction between global and local contingen-
cies: Scene identity and category information place limits 
on the application of local contingencies. We hypothesize 
that just as scene categories can constrain identification of 
canonical and noncanonical objects (cf. Davenport, 2007; 
Davenport & Potter, 2004), global scene-identity informa-
tion can limit the access of local contingency information 
in memory. In the context of the present study, when global 
scene identity did not give rise to reasonable expectations 
concerning a pillow’s presence or location, the localist “the 
target is on a pillow” rule was not invoked. Whereas basing 
abstracted contingency knowledge on local scene aspects 
allows learning to be applied to multiple scene categories, 
basing the access of such knowledge on global identity in-
formation limits its application to situations in which such 
knowledge is likely to be useful.

In conclusion, we have provided evidence for a novel 
kind of contextual cuing in which statistical regularities 
evident across scene exemplars are learned incidentally 
during scene viewing. The local contingencies underlying 
this learning can be flexibly applied to a variety of differ-
ent scene categories insofar as they are consistent with 
global gist. Hence, we have shown how learning across 
scene exemplars and categories is guided by semantic 
expectations. Future research is now required to more 
closely examine these processes.
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