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Abstract
Understanding the drivers of stream macroinvertebrate distribution patterns—the most diverse ani-

mal group in freshwater ecosystems—is a major goal in freshwater biogeography. Climate and

topography have been shown to explain species0 distributions at continental scales, but the contri-

bution of natural and anthropogenically altered streamflow is often omitted in large‐scale analyses

due to the lack of appropriate data. We test how macroinvertebrate occurrences can be linked to

streamflow observations and evaluate the relative importance of streamflow regimes and water

use for macroinvertebrate occurrences from 19 orders across Europe. We first paired species sam-

pling locations with hydrological gauging stations considering 5 combinations of the geographic dis-

tance and difference in flow accumulation (upstream contributing area). We then used Generalized

Linear Models to assess the influence of the streamflow regime, simulated water use, and climate

and topography on the occurrence of macroinvertebrates. The pairing method that assigned species

records to the closest gauging station in terms of both distance and flow accumulation performed

best. Most of the species studied occurred preferentially in river habitats with low mean annual

streamflow and streamflow variability, high winter streamflow, and low levels of water withdrawals

for irrigation or manufacturing. We conclude that flow accumulation is a useful proxy to evaluate

the proximity of species records to gauging stations, omitting species records that do not belong

to a given stream reach. The strong contribution of streamflow and water use indicators on macro-

invertebrate occurrences underline their importance for yielding robust occurrence estimates.
W, water withdrawal.
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1 | INTRODUCTION

Freshwater ecosystems are unique biodiversity hotspots, harbouring

9.5% of all described animal species and covering less than 1% of

Earth0s surface (Balian, Lévêque, Segers, & Martens, 2008). These

species‐rich ecosystems are heavily impacted by multiple stressors,

such as climate change, pollution, fragmentation, and invasive species

(Strayer & Dudgeon, 2010). This underlines the need for a better

understanding of freshwater species0 biogeography and the

environmental factors that shape species0 distributions.

Discharge can be seen as a dominant variable in riverine ecosys-

tems, affecting a multitude of subsequent abiotic and biotic parame-

ters (Power, Sun, Parker, Dietrich, & Wootton, 1995). Here, the flow

regime, that is, the temporal sequence of river discharge, plays a major

role in shaping stream and river habitats (Dewson, James, & Death,

2007; Poff, 1997). A variety of hydrological metrics can be used to

quantify different dimensions of the flow regime, such as the fre-

quency, timing, duration, and rate of change of flows. In addition, indi-

cators of flow magnitude can be considered, such as mean annual

discharge and seasonal/monthly flows, and statistical low and high

flows (McGarvey, 2014; Monk, Wood, Hannah, &Wilson, 2008; Olden

& Poff, 2003). Riverine flow‐ecology relationships seek to reveal links

between the flow regime and the functional traits of instream biota

(Tonkin, Jähnig, & Haase, 2014) and have mainly focused on fish as

model organisms (but see Monk et al., 2008, Stewart‐Koster, Olden,

& Gido, 2014, Booker, Snelder, Greenwood, & Crow, 2015, Leigh &

Datry, 2016 for macroinvertebrates). Hydrologic regimes and their

alterations have been recognized as a major influence in shaping

freshwater fish occurrence patterns at the basin scale (Oberdoff,

Guégan, & Hugueny, 1995; Xenopoulos & Lodge, 2006), and large‐

scale discharge patterns have been shown to impact fish species

richness and composition (McGarvey, 2014; Mims & Olden, 2013).

Several factors have been identified as contributing to fish distribution

patterns, such as short‐term flow variation and the scale at which the

patterns are analysed (Jackson, Peres‐Neto, & Olden, 2001; Olden &

Poff, 2003; Stewart‐Koster et al., 2014).

Though fish are ecologically and economically important, about

60% of animal species in freshwater ecosystems are benthic stream

macroinvertebrates (Balian et al., 2008). Understanding the

distribution patterns of these highly diverse organisms is an important

goal in freshwater biogeography and conservation (Dijkstra,

Monaghan, & Pauls, 2014). Macroinvertebrates play a crucial role in

freshwater ecosystems regarding food webs and species community

structure and are sensitive to environmental influences. Moreover,

they are used in the bioassessment of streams and rivers (Bonada, Prat,

Resh, & Statzner, 2006; Johnson, Wiederholm, & Rosenberg, 1993),

making them particularly useful for understanding the impact of

environmental and hydrological factors. However, to fully understand

broad patterns of species occurrences, analyses over a “large
geographical range” but at a “fine spatial grain,” are needed. Local

species assemblages can be shaped through a composite of basin,

catchment, and site level habitat characteristics, including site‐specific

hydrological conditions (Poff, 1997, Thorp, 2014, Booker et al., 2015,

Domisch, Jähnig, Simaika, Kuemmerlen, Stoll, 2015). It is unclear how

important fine‐scale hydrological regimes are when assessing general

and large‐extent patterns for a variety of stream macroinvertebrate

distributions. Furthermore, it is unclear which streamflow and water

use metrics are potentially most important across a continental scale.

The relevance of particular predictors to species occurrences is

usually assessed by regressing species presence‐absence or

presence‐only data against environmental data at sites where the

species were sampled (i.e., species distribution models [SDMs], Elith

& Leathwick, 2009). Several issues need to be considered when

carrying out these analyses: First, it is important to consider selecting

predictors that are ecologically relevant for describing the occurrence

of species, where direct measures should be preferred over proxies

(Vaughan & Ormerod, 2003). Second, species occurrence data have

to match spatially and temporally with the environmental data

(DeWeber & Wagner, 2014; Monk et al., 2012). Hence, when using

flow data, the appropriate gauging stations need to be carefully

paired to each species occurrence due to the species data source

heterogeneity (survey data vs. public biodiversity databases), as well

as spatial and temporal discrepancies between flow and macroinver-

tebrate sampling (Leigh & Datry, 2016; Monk et al., 2012). Third, col-

linearity among predictors complicates assessment of relative

importance and can lead to spurious conclusions. Dormann et al.

(2013) have suggested that collinearity of | r | > 0.7 warrants consid-

eration of removing redundant predictors (Olden & Poff, 2003).

Fourth, over large spatial scales (such as continental), species sam-

pling effort may be very heterogeneous in terms of sampling effort

and spatial coverage. Biased species data in geographic space has

the high potential (but not necessarily) to also be biased in environ-

mental space and could therefore lead to biased species–environment

response curves as well. It may be therefore necessary to adjust for

such a geographic bias in the distribution modelling (Araújo & Guisan,

2006; Wisz et al., 2008). In summary, carefully accounting for these

issues provides an estimate of the most important contributing

predictors that shape the distributions of the species.

In this study, we evaluate the relative importance of streamflow

regimes and water use in relation to the occurrence of macroinverte-

brates from 19 taxonomic orders across Europe. For streamflow

regimes, we use gauging stations, whereas for water use, we consider

simulated water use based on statistical data. The latter serves mainly

as a proxy for water quality alterations (for which no suitable pan‐

European data set is currently available). As locations of streamflow

gauging stations seldom coincide with macroinvertebrate sampling

locations, we tested various pairing methods to link macroinvertebrate

occurrences to streamflow observations. We then used a Generalized



DOMISCH ET AL. 3 of 11
Linear Modelling (GLM) approach to relate macroinvertebrate occur-

rences to a number of environmental predictors.

In the absence of wide‐ranging instream environmental data, we

acknowledge that a variety of methods have been used to estimate

discharge at ungauged locations, for example, through scaling

observed flow at gauged streams to ungauged streams based on the

ratio of the drainage areas (McMahon, Fenton, Stewardson, Costelloe,

& Finlayson, 2002), hydrological regionalization (Patil & Stieglitz, 2011,

and reviewed in Olden, Kennard, & Pusey, 2012, Patil & Stieglitz,

2012), or by means of correlative analyses of daily discharge data

(Yuan, 2013). Our primary aim, however, is to test a species sampling

location‐gauging station matching strategy that could be also used in

less studied regions without high‐resolution environmental instream

data calibrating and validating the modelled (discharge) data. Specifi-

cally, we aimed to answer the following questions, with a focus on

the methodology:

1. What is the optimal method to spatially pair macroinvertebrate

sampling locations with streamflow gauging stations?

2. Which predictors of hydrological regime and water use contribute

most to macroinvertebrate occurrences in Europe?

3. What is the effect of accounting for a geographic sampling bias on

the predictor contributions?
2 | MATERIAL AND METHODS

2.1 | Species data

We used the freshwaterecology.info database (Schmidt‐Kloiber &

Hering, 2015) as a baseline for the taxonomic nomenclature of stream

macroinvertebrates, and synonyms were unified to avoid redundancy.

We then used this baseline to scan for macroinvertebrate presence

records (geographic coordinates with their sampling date) in several

databases across Europe (Table 1) to retrieve records for those species.
TABLE 1 Data sources and the spatial coverage for retrieving species poin

Source Spatial cove

Standardization of River Classifications (STAR) Europe

River InVertebrate Prediction And Classification System
(RIVPACS)

UK

RElationships Between Ecological and Chemical stAtus in
surface waters (REBECCA)

Norway

Environmental database (MVM) Sweden

GUADALMED project Spain

Personal communication (C. Zamora‐Muñoz, M. Sáinz‐
Bariáin, N. Bonada)

Mediterrane

Environmental agencies: UBA, HLUG, LUBW Germany

Global Biodiversity Information Facility (GBIF) Europe

Zoological‐Botanical Database (ZOBODAT) Europe

Note. The GBIF and ZOBODAT databases served for range‐filling procedure w
Species records only derived from GBIF or ZOBODAT, but not from the other
We removed duplicate records, and only those sampled after 1950

were considered; this matches the time period covered by the hydro-

logic and climatic predictors. This procedure yielded a total of >3 mil-

lion occurrence records, collected at 191,752 unique locations across

Europe (Figure S1).
2.2 | Observed streamflow from gauging stations

Monthly discharge data from gauging stations since 1950 was pro-

vided by the Global Runoff Data Centre (http://grdc.bafg.de). If neces-

sary, we adjusted locations to match a gridded flow accumulation

based on a 15 arc‐sec (0.00417 degree) digital elevation model

(Lehner, Verdin, & Jarvis, 2008), resulting in 1,514 unique stations

(see Supporting Information for a detailed description). Flow accumula-

tion refers to the total number of grid cells that comprise the upstream

contributing stream network relative to any specific point in the net-

work. For each station, we applied two criteria: (a) Species sampling

took place within a radius of 10 km, and (b) at least 10 years of monthly

streamflow data was available. Accordingly, 757 stations across

Europe were used in our analyses with 32,942 species sampling loca-

tions and 169,631 unique species records.

We calculated all hydrological predictors from monthly flow time

series, for only complete calendar years of gauging records. Long‐term

averages were calculated from 10 to 30 years of observations and,

where possible, for the time period 1961–1990 (the reference period

of the WaterGAP model for the simulated water use data, see below).

In the case of incomplete years, the next available complete year was

merged to the given series, to allow for a minimum 10‐year series (see

Table 2 and Table S2).
2.3 | Simulated water use predictors

Water abstraction for domestic use, manufacturing, thermal power

plant cooling, and irrigation was represented by simulated gridded

water withdrawal data derived from the WaterGAP water use

submodels (Water–Global Analysis and Prognosis; www.uni‐
t records for the analyses

rage Reference/download

(Furse et al., 2006)

(Wright, Sutcliffe, & Furse, 2000)

(Schartau, Moe, Sandin, McFarland, & Raddum, 2008)

(Fölster, Johnson, Futter, & Wilander, 2014)

(Bonada, Zamora‐Muñoz, El Alami, Múrria, & Prat, 2008;
Bonada, Zamora‐Muñoz, Rieradevall, & Prat, 2004)

an Basin Unpublished

Unpublished

www.gbif.org

www.zobodat.at

ith the aim of obtaining additional records across the entire species range.
survey‐based datasets, were not added to the analyses.

http://www.freshwaterecology.info
http://grdc.bafg.de/
http://www.uni-frankfurt.de/45218063/WaterGAP
http://www.gbif.org/
http://www.zobodat.at/


TABLE 2 The predictor codes, explanations, data units, temporal scale, spatial grain, and the data source used in the analyses

Predictor code Predictor explanation Data unit
Temporal
scale

Spatial
grain

Data
source

Q mean Avg. annual discharge m3/s 10–30 yr avg. Point GRDC

Q winter Avg. discharge Dec + Jan + Feb/Q mean m3/s 10–30 yr avg. Point GRDC

Q spring Avg. discharge Mar + Apr + May/Q mean m3/s 10–30 yr avg. Point GRDC

Q autumn Avg. discharge Sep + Oct + Nov/Q mean m3/s 10–30 yr avg. Point GRDC

Q dynamics Avg. monthly Q min–Q max/Q mean m3/s 10–30 yr avg. Point GRDC

Q 90events Avg, number of events where monthly Q < = Q 90 Counts 10–30 yr Point GRDC

Q 90months Avg. number of consecutive months per year where
monthly Q < = Q 90

No. of months 10–30 yr avg. Point GRDC

Q 90std Monthly low flow Q (Q 90/Q mean) m3/s 10–30 yr avg. Point GRDC

WW domestic Domestic water withdrawal m3/yr 1961–1990 0.5° WaterGAP

WW manufacturing Manufacturing industry water withdrawal m3/yr 1961–1990 0.5° WaterGAP

WW electric Water withdrawal for electricity generation in
thermal power plants

m3/yr 1961–1990 0.5° WaterGAP

WW irrigation Irrigation water withdrawal m3/yr 1961–1990 0.5° WaterGAP

Temperature Annual mean air temperature °C*10 1950–2000 0.00833° WorldClim

Slope Terrain slope representative for stream slope Degree of slope – 0.00833° Hydro1k

Note. Avg = average; Q = discharge; WW = water withdrawal. Data sources are Global Runoff Data Centre (GRDC, www.bafg.de/GRDC), WaterGAP
(www.uni‐frankfurt.de/45218063/WaterGAP), WorldClim (www.worldclim.org), and Hydro1k (lta.cr.usgs.gov/HYDRO1K). Q90 indicates that during
90% of the months, the observed streamflow is higher than this value.

4 of 11 DOMISCH ET AL.
frankfurt.de/45218063/WaterGAP; Flörke et al., 2013; Müller

Schmied et al., 2014). WaterGAP simulates the macro‐scale behaviour

of the terrestrial water cycle, including the anthropogenic impact.

These data at 0.5° spatial grain were averaged to mean annual water

withdrawals for the period 1961–1990 (Table 2) and extracted for

each gauging station.

We note that return flows, resulting from water withdrawal, gen-

erally decrease natural streamflow that are in turn reflected by

streamflow observation in a feedback mechanism (Döll, Fiedler, &

Zhang, 2009). Thus, the observed hydrological regimes are already

affected by water withdrawals. However, return flows, for example,

in the form of untreated wastewater, may also cause an alteration of

water quality and thus affect stream macroinvertebrate occurrences.

For example, rural agriculture is globally a source of contaminants,

for example, from dissolved fertilizers and nutrients, chemical run‐off

(e.g., pesticides), and livestock manure (Corcoran, 2010; FAO, 2012).

About 80% to 95% of irrigation water is currently assumed to be return

flow (Döll, Müller Schmied, Schuh, Portmann, & Eicker, 2014; Döll

et al., 2012). Untreated wastewater from the domestic and

manufacturing sectors can be contaminated by a variety of harmful

dissolved or suspended matter (Flörke et al., 2013). Given the lack of

consistency in water quality data at the European scale (Sato, Qadir,

Yamamoto, Endo, & Zahoor, 2013), we found it useful to substitute

water quality predictors by gridded estimates of water withdrawals

(Flörke et al., 2013, Müller Schmied et al., 2014).
2.4 | Climatic and topographic predictors

Models were supplemented with gridded 30 arc‐sec (0.00833 degree)

climate and topography (a) to fill the possible gap in unexplained vari-

ance of hydrological predictors, and (b) to serve as a reference to judge

the relative importance of the hydrological predictors. Mean annual air

temperature and slope were extracted from the WorldClim and
Hydro1K databases (USGS; Hijmans, Cameron, Parra, Jones, & Jarvis,

2005) for each macroinvertebrate sampling location (Table 2). Air tem-

perature and slope were used as surrogates for water temperature

(Caissie, 2006) and flow velocity, respectively.
2.5 | Pairing of sampling locations with streamflow
gauging stations

We related the species sampling locations to the respective discharge

gauging station using a combination of the Euclidian (straight line) dis-

tance and the difference in flow accumulation (ΔFA) between the

gauging station and the species sampling locations. Here, ΔFA helped

to identify cases where species and hydrological data were likely to

be collected in river reaches of similar size. We tested five pairing

methods (Figure 1) and only species occurrences found within these

ranges were used (Tables S1 and S2). Species occurrences needed to

be within a distance of (a) 10 km to the nearest gauging station with

a maximum ΔFA of ±15%, (b) 10 km and ±5% ΔFA, (c) 3 km and

±15% ΔFA, (d) 3 km and ±5% ΔFA, and (5) 3‐km distance. These dis-

tance values are in line with studies analysing data using pairing dis-

tances from 200 m up to 25 km (Leigh, 2013; Leigh & Datry, 2016;

Monk et al., 2012).

Essentially, the different pairing methods applied a filter on the

macroinvertebrate sampling locations that were considered in the

models (Figure 1, Table S2). For instance, the “10 km and ±15% ΔFA”

combination allows most species sampling locations in tributaries to

be included in the analysis. In contrast, the most conservative method

(3 km and ±5% ΔFA) omits multiple species sampling locations that are

not located on the main stem.

In addition, we created two species subsets having at least 50 and

20 unique geographic occurrences, respectively (Stockwell & Peterson,

2002). The smaller set of 57 species (50 unique occurrences) was con-

sidered more robust and was therefore used for identifying the optimal

http://www.uni-frankfurt.de/45218063/WaterGAP
http://www.bafg.de/GRDC
http://www.uni-frankfurt.de/45218063/WaterGAP
http://www.worldclim.org/
http://lta.cr.usgs.gov/HYDRO1K


FIGURE 1 Scheme of the pairing methods based on the distance (in
km) and difference in flow accumulation (ΔFA) between stream
macroinvertebrate sampling locations and discharge gauging stations.
We first checked if species sampling locations fall within a radius (3 or
10 km) of the gauging station, and then if the ΔFA between the
gauging station and the species sampling locations did not exceed 5%
or 15%. In total, we used five combinations of distance and ΔFA
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pairing method, with 459 available gauging stations (Figure 2). For all

further analyses, we relaxed the number of unique occurrences to 20

and aimed to use a larger set of 151 species with 487 available gauging

stations (Figure 2, Tables S1 and S2).
2.6 | Preselection of predictors

From an initial pool of 39 predictors (Table S3), we selected 14,

avoiding high collinearity among predictors and selecting those we
FIGURE 2 Spatial distribution of macroinvertebrate sampling locations an
method of 3 km and a difference in ±5% flow accumulation (ΔFA) that wa
upstream contributing area of a stream reach. Blue points and triangles ma
and orange triangles represent the data with 57 species (min. 50 occurrenc
deemed relevant for our study (Table 1; r < |0.7|, Dormann et al.,

2013). The only exception was the relative magnitude of low flows

(Q90std), which was the only predictor representing low flow condi-

tions, and which was correlated with seasonal dynamics (Qdynamics,

r = 0.76). As the species encompass a wide taxonomic diversity, we

kept a heterogeneous set of predictors to enable building models with

only one significant predictor. In other words, we calibrated a model

for each species using all 14 predictors and then identified the most

important predictor for each. We scaled and standardized all predictors

(centred to zero mean and unit variance) to make the regression coef-

ficients and thus the predictor contribution comparable between

models.
2.7 | Accounting for sampling bias

The spatial density of macroinvertebrate sampling locations differed

among countries, with a high density in the British Isles (Figure 1).

We tested for bias‐derived effects using the sampling locations “as

is,” and weighting each location to decrease the bias (weighted method

sensu Araújo & Guisan, 2006). Weighting factors were calculated for

each pairing method as the inverse square root of the spatial density

of sampling locations per country (or country group), ranging between

1.0 for high data density countries (UK) and 40.2 for countries with

sparse data (e.g., Eastern Europe, Table S4).
2.8 | Statistical modelling

Species occurrence (i.e., presence) was treated as a Bernoulli variable,

where absenceswere locationswhere other but the target specieswere

recorded. As most species records originated from survey data with

explicit species‐specific absence records, this method was considered
d gauging stations across Europe under the most conservative pairing
s used for model comparison. Flow accumulation refers to the
rk the data with 151 species (min. 20 occurrences), whereas red points
es). Note that behind every red point/orange triangle is a blue one



FIGURE 3 Raw log‐likelihoods derived from the set of 57 species
(used to test the goodness of fit of the different pairing method
schemes) and the different pairing methods, with the range from
minimum to maximum centred around the mean relative to pairing
method 3 km and ±5% ΔFA; (a) derived from the data “as is,” and (b)
after accounting for a sampling bias (weighted)
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more appropriate than randomly drawing pseudoabsences. For each

species, datawere split into 70% calibration and 30%validation subsets.

We fit a GLM for each species separately, assuming a binomial

error distribution, with an elastic net regularization (Zou & Hastie,

2005), using the “cv.glmnet” function within the “glmnet” package

(ver. 1.9–5) in R (ver. 3.0.2) (Friedman, Hastie, & Tibshirani, 2010; R

Development Core Team, 2017). The elastic net regularization penal-

izes the coefficients, so that the coefficients for predictors that have

little or no effect get shrunk to zero. This is useful when many predic-

tors are thought to have a negligible effect, and also when the num-

ber of predictors is higher than the number of species presence

points (Friedman et al., 2010). We set the tuning parameter lambda

to automatic, ran a 10‐fold internal cross‐validation (which randomly

selects parts of the dataset for its analysis and selects the best

model), and let the GLM run 10 repetitions for each species (see

the example R‐code in the Supporting Information). The glmnet func-

tion screens internally at every lambda step and checks after conver-

gence if any violations occurred. To evaluate the models, we

extracted the regression coefficients and the deviance for each repe-

tition. The deviance is minus twice the log‐likelihood of the model

fitted to the data, so a smaller deviance indicated a better‐fitting

model. Across the 10 repetitions for each species, we calculated coef-

ficient means, standard deviation, minimum and maximum, the final

number of non‐zero predictors, and also mean and standard deviation

of the deviance. Accounting for the sampling bias was done using the

“weights” option in the “cv.glmnet” function. Overall, the described

modelling approach yielded faster converging results and a more con-

servative selection of significant predictors than preliminary tests

with a longer list of predictors and with a GLM fitted by maximum

likelihood.

We summarized the mean, maximum, and minimum predictor

coefficients across all species to assess the relative importance of each

predictor. To distinguish positive and negative predictor effects across

species, we summed the mean positive or negative coefficients and

standardized them (i.e., dividing by the number of species). We also

counted the number of positive and negative predictor counts with

non‐zero coefficients. Finally, we ranked the predictors according to

the sum of absolute (i.e., the positive and negative) mean coefficients.

In summary, we built 57 models to determine the optimal pairing

method and a further 151 models to examine the key coefficients.
3 | RESULTS

3.1 | Optimal pairing method based on model
evaluation

Among the five pairing methods, and whether ignoring or accounting

for a sampling bias, the most conservative pairing method with 3 km

and ±5% ΔFA (Figure 1c) performed best in terms of model evaluation

(i.e., deviance) based on held out validation data (Figure 3). The subse-

quent results are therefore based on this pairing method.

The model deviances, described by the spread of log‐likelihood

values around the mean, show how the different models within the

nonweighted model type generally perform better (Figure 3a, spread
closer to the best‐performing pairing method of 3 km and ±5% ΔFA)

than those in the weighted model type (Figure 3b).
3.2 | Predictor ranking (larger species set of 151
species)

The following predictors ranked highest with regard to counts and

absolute coefficient sums, meaning that these were selected most

often as important predictors: domestic (WWdomestic), manufacturing

(WWmanufacturing) and irrigation (WWirrigation) water withdrawals, sea-

sonal dynamics (Qdynamics), and discharge of the autumn months

(Qautumn, Table 3, Figure 4).

Among the hydrological indicators, Qautumn and Qdynamics showed

the strongest, mostly negative model coefficients, whereas mean

annual streamflow (Qmean) was a significant predictor for many species

but contributed less than Qdynamics. Most macroinvertebrate species

occurred preferentially in habitats with a low Qmean, a low Qdynamics,

or a high winter streamflow (Qwinter, Figure 4). The strongest model

coefficients were found for WWirrigation, WWdomestic, and

WWmanufacturing, with most macroinvertebrate species occurring pref-

erentially at locations with small WWirrigation or WWmanufacturing, and

some species reacting positively and others negatively to WWdomestic

(Table 3, Figure 4).
3.3 | Effect of bias reduction on predictor ranking

The nonweighted analysis produced a different predictor ranking, with

the highest ranking WWdomestic appearing in the nonweighted models

more often, than the highest ranking Qdynamics in the weighted models

(Table 3). The largest difference regarding the mean coefficient was

observed for WWirrigation (nonweighted models: 0.167; weighted

models: 0.260). Essentially, applying weights in the model yielded a

slightly different set of predictors that were selected most often.



FIGURE 4 Ranking of the 14 predictors for the larger species set (151) under the most conservative pairing method of 3 km and ±5% ΔFA. (a)
Using the data “as is” (nonweighted), and (b) after accounting for a sampling bias (weighted). Red and green bars indicate negative and positive
coefficients, respectively. Solid bars indicate the standardized sum of positive (green) and negative (orange) coefficients (top x‐axis), where error
bars represent the standard deviation across all species. Hollow bars indicate the positive and negative predictor counts in the models (bottom x‐
axis). Predictors are sorted by the absolute magnitude of the standardized coefficients. Q = discharge; WW = water withdrawal

TABLE 3 Predictor count and the sum of absolute model coefficients for the optimal pairing method 3 km and ±5% ΔFA for the nonweighted and
weighted analyses for the larger set of all 151 species

Nonweighted Weighted

Predictor Predictor count Sum abs. coefficients Predictor count Sum abs. coefficients

Q mean 80 0.058 87 0.089

Q winter 61 0.079 83 0.112

Q spring 63 0.067 70 0.069

Q autumn 79 0.163 77 0.156

Q dynamics 100 0.152 104 0.159

Q 90events 79 0.061 92 0.075

Q 90months 75 0.063 52 0.053

Q 90std 56 0.048 59 0.062

WW domestic 113 0.156 81 0.118

WW manufacturing 72 0.130 94 0.176

WW electric 53 0.076 69 0.078

WW irrigation 63 0.167 91 0.260

Temperature 79 0.061 92 0.055

Slope 74 0.059 92 0.088

Note. The sum of absolute model coefficients is standardized by the total number of species. The five highest counts and coefficient sums are in bold. The
order of the predictors follows Table 2. Q = discharge; WW = water withdrawal.
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4 | DISCUSSION

Our study quantifies the relative influence of observed decadal

hydrology, simulated water use, and climate and topography on

stream macroinvertebrates distributions at the European scale. The

most important hydrological predictors underline the contribution of

seasonal effects of stream flow, and simulated domestic,

manufacturing, and irrigation water use on macroinvertebrate

occurrences. From a methodological point of view, species records

can be related to the appropriate gauging stations in a post‐sampling

process using flow accumulation (i.e., size of the upstream

contributing area) as a simple proxy for the proximity between the
locations. Accounting for a geographic sampling bias did not change

the main outcome.
4.1 | Optimal pairing method of sampling and
gauging locations

When species records are sampled independently from the hydrologi-

cal data, the flow accumulation serves as a method for assigning spe-

cies records to the gauging station. Here, the Euclidian distance is

important; however, better performance in terms of model deviance

was achieved by allowing the species sampling locations to be only

“a flow accumulation of ±5% away” in addition to the distance. This
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largely eliminates sampling locations that do not belong to the same

river reach as the gauging station. This is not surprising, as the environ-

mental conditions closest to the stations should best reflect those at

species0 sampling locations. However, even the pairing method with

the most restrictive distance of 3 km alone was not able to yield the

same robustness of the results as when flow accumulation was used

as an additional criterion. This has important implications for freshwa-

ter biogeographic studies and SDMs where usually a “snapping toler-

ance” of 1 to 3 km is used to assign and move species records to the

stream network (Benstead & Leigh, 2012).

We note that for a successful model comparison, the same set of

data for each pairing method was required. Following Liebig0s Law of

the minimum, the 57 species selected had a minimum of 50 unique

occurrences under the most conservative pairing method. While plenty

of species records were available across Europe (see Figure S1), the

species set was further narrowed by the availability of representative

streamflow data and hence the gauging stations (Figure 2).

An alternative procedure could have consisted of using only those

species records where corresponding rivers could be correctly

identified in the first place (i.e., both species and hydrological data

were sampled simultaneously). This procedure was, however,

considered to be subject to at least three limitations. First, most spe-

cies occurrences would have been omitted from the analyses due to

the smaller data set, yielding not only a smaller set of species but spa-

tially and environmentally nonrepresentative species distributions.

Second, the ability to match the names of sampling sites and gauging

stations would have been limited, due to naming ambiguity (incorrect

or multiple spellings of river names, multiple rivers having the same

name or changing names after confluences). Last, for taxa, which are

strong flight dispersers, the occurrence in a nearby tributary water

body may be still associated with flow characteristics of the main

gauged river. We are aware that for Europe, river names and topolog-

ical Pfafstetter codes exist, starting at the river mouth, whereas

Strahler codes start at headwater river reaches (De Jager & Vogt,

2010). As we wanted to design a matching strategy applicable also

for other continents than Europe, this source would have been only

of limited use to pair sampling locations and gauging stations.
4.2 | Predictor ranking

Predictor rankings indicate the importance of seasonal streamflow

variability, autumn discharge, and water withdrawals for domestic,

manufacturing, and irrigation use. These results highlight the impact

of both natural and anthropogenically altered streamflow. The latter

may be seen as a proxy for different types and degrees of water

pollutants that are introduced into rivers by the return flows of these

sectoral water uses. Thus, many streams and rivers are

anthropogenically impacted, which determines the present‐day

distribution of macroinvertebrates across Europe (Döll et al., 2009).

The effect of water withdrawals for cooling of thermal power plants

(WWelectric) was small compared to the magnitude of the other water

use indicators. This may be due to the more local and patchy

distribution of such thermal pollution sources, thus influencing

macroinvertebrate occurrences less than chemical pollution.
Macroecological predictors in freshwater studies, represented

here by air temperature and slope, had an intermediate influence in

shaping the distribution of macroinvertebrate species. While such

predictors are valuable in assessing the “big picture” on coarse spatial

grains (Domisch, Jähnig, et al., 2015), characterization of in‐stream

habitat can be further improved by adding hydrological regime and

anthropogenic water usage (Figure 4). Thus, our study shows that

accounting for the composite of scale‐dependent characteristics yields

valuable information regarding freshwater species occurrence

patterns, as done here with climate (basin), hydrology and water use

(catchment), and local topography (site) (Poff, 1997, Thorp, 2014,

Domisch, Jähnig, et al., 2015).

We note that using modelled in‐stream conditions provides an

alternative to account for the small‐scale variation in abiotic conditions

and has been demonstrated in previous studies (Chinnayakanahalli,

Hawkins, Tarboton, & Hill, 2011; Hill & Hawkins, 2014; Jähnig et al.,

2012; McMahon et al., 2002). Such modelled predictors may provide

well‐performing models; however as a trade‐off, modelled predictors

may also introduce additional uncertainties especially when applied

to a multitude of predictors (similar to downscaling coarser grain data

over considerable distances to create range‐wide input data).

The importance of seasonal flow dynamics (Qdynamics) highlights

the analogy to the so‐called bioclimatic predictors (Busby, 1991) that

are frequently used in terrestrial biogeographic studies and are based

on SDMs. Monthly hydrological metrics can therefore be useful in

freshwater predictive modelling studies, once aggregated to, for

example, quarterly “hydroclim” predictors (Kuemmerlen et al., 2012,

Domisch, Amatulli, Jetz, 2015).

Several studies found the short‐term streamflow of equally major

relevance. For instance, Wagner, Marxsen, Zwick, and Cox (2011)

reported that monthly discharge patterns influence the occurrence of

macroinvertebrate species in a small catchment of central Germany,

and Stewart‐Koster et al. (2014) showed that the occurrence of fish

in 32 North American streams depended on the discharge the year

before the sampling event. Kuemmerlen, Schmalz, et al. (2015) found

that among the best predictors for macroinvertebrate in SDMs was

the number of days in the year with flow exceeding mean annual

discharge by 150% and by 200% in the within the Chinese Changjiang

catchment and in the German (Hesse) Kinzig catchment, respectively

(Kuemmerlen, Stoll, Sundermann, Haase, 2015). These studies were

performed at smaller spatial scales or single rivers, and such short‐term

variables (accounting for the discharge in previous year) were not avail-

able for the majority of the sampling locations at the European scale

and were therefore omitted from the analyses prior to modelling.

It is important to bear in mind that a large portion of the 151

species are likely to be generalist species, and our results could

emphasize those hydrologic predictors that influence the distribution

of these wide spread species. In addition to a minimum of 20 unique

occurrences to yield robust model estimates, the macroinvertebrate

sampling locations needed to be in the vicinity of the gauging stations

(which are mostly located along larger rivers, and scarce in Mediterra-

nean intermittent rivers), we narrowed the ecological preferences of

the species to only those that were considered that can thrive at

these hydrological conditions in the first place (i.e., where the species

occur).
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4.3 | Effect of bias reduction on predictor ranking

In contrast to our expectations, accounting for sampling bias only

marginally changed the predictor ranking. On the one hand, the model

deviance of the different pairing methods using the “raw” data was

scattered less around the mean deviance derived from the optimal

pairing method than those using weighted data (and when all other

factors were kept constant, Figure 3a,b). We interpret this as an effect

of the geographic bias of the data, where the models are largely trained

on the data from the British Isles, and thus spatial autocorrelation is

more likely to lead to overfitting (e.g., Wenger & Olden, 2012). On

the other hand, the larger ranges of deviance for the weighted models

potentially better represent the more variable conditions of the

predictors across Europe, as the weights facilitate the discrimination

of the data. While any bias correction needs to be assessed with care,

in our case, both options yielded almost identical results in terms of

predictor rankings.
4.4 | Conclusions

At large spatial scales, the “best case scenario” of simultaneously sam-

pled biological and hydrological data is seldom available. Linking the

two independently collected data types together in a post‐sampling

step increases the sample size and may add to the understanding of

freshwater species distribution patterns and provide a new dimension

for freshwater biogeographic questions. The hydrological regime and

simulated water use ranked higher than temperature and slope,

potentially influencing the species occurrences most in our study. This

emphasizes the importance of the hydrological metrics in large‐scale

freshwater biogeographic studies that are usually neglected. While this

study is focused on the methodology, our findings are valuable for

potential follow‐up studies, such as in‐depth analyses regarding the

causal relationship between species and hydrological data, and

regarding species group‐ and trait‐specific preferences (via species

occurrences) related to environmental conditions at large spatial

scales.
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